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ABSTRACT. Reference pressure (105 Pa) parameters for the silicate liquid equation
of state of Ghiorso (2004a) are calibrated from literature data on measurements of
densities and sound speeds. A model for the temperature- and compositionally-
dependent, reference-pressure volume (density) in the system K2O-Na2O-CaO-MgO-
FeO-NiO-CoO-Fe2O3-Al2O3-TiO2-SiO2 is obtained. Precision of data recovery is 0.76
percent (one root-mean-square residual). Linear mixing relations for model parame-
ters are utilized in this calibration with the inclusion of quadratic terms between soda
and titania and potash and titania to account for the effect of alkali metals on the
partial molar volume of TiO2. Liquids in the system CaO-Al2O3-SiO2 with molar ratios
of CaO/SiO2 < 0.5 are excluded from this analysis in order to avoid the inclusion of
additional non-linear terms. Iron-bearing systems are modeled by first “speciating” the
liquid to obtain molecular proportions of FeO, FeO1.5 (Fe2O3) and FeO1.3
(Fe0.4

2!Fe0.6
3!O1.3). Partial molar properties are extracted for all three iron oxides. This

procedure is followed because (1) it affords an internally consistent means of
extrapolating previously calibrated models of iron-redox equilibria in silicate melts to
elevated pressure, and (2) it results in significant improvements in model recovery of
density measurements on Fe-bearing systems. The model partial molar volume of
FeO1.3 is !12 percent smaller than a linear combination of the fully oxidized and
reduced endmembers. Internally consistent expressions for the reference pressure
compressibility and its temperature dependence are formulated from a calibration of
sound speeds in molten liquids. A model for the temperature- and compositionally-
dependent sound speed in the system K2O-Na2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-
SiO2 is obtained. Precision of data recovery is 1.7 percent. Mixing relations identical to
the volume model are adopted for consistency with the inclusion of an additional
quadratic composition term in soda and alumina.

introduction
This paper is the second in a series of four that together outline the development

and calibration of an equation of state (EOS) for multi-component silicate liquids. The
goal of this series of papers is to propose an EOS (that is, a functional relation between
volume, temperature, pressure and composition) that is applicable over the range of
silicate liquid compositions that include natural magmas, and over a range of tempera-
tures and pressures that permit calculation of densities and derived thermodynamic
properties of liquids generated in the Earth’s upper mantle. The first paper in this
series (Ghiorso, 2004a, hereafter Part I) deals with general theoretical arguments
regarding an appropriate functional form for the EOS. The third and fourth papers in
the series (Ghiorso 2004b, 2004c, hereafter Parts III and IV) are concerned with
calibration of model parameters at elevated pressure. In this paper the focus is on
calibration of model EOS parameters at reference pressure (Pr) conditions of 105 Pa
(that is, 1 bar or 1 atmosphere).

Because density is a fundamental physical property that is important for understand-
ing both the thermodynamic and the dynamic behavior of a material, a great deal of
attention has been focused on experimental determination of the volumetric proper-
ties of silicate melts at Pr . The first important systematic evaluation of low-pressure
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density measurements on molten silicates was the seminal work of Bottinga and Weill
(1970). They developed a reference pressure EOS that described the compositional
dependence on the volume with linear mixing relations, that is the volume, V, could be
expressed within experimental error as

V ! !
i

niv!i (1)

where v!i are the partial molar volumes and ni are the numbers of moles of a set of
linearly independent compositional variables (components). Bottinga and Weill (1970)
chose simple oxides as components and noted that the v!i need only be functions of
temperature. Subsequent experimental studies and reanalysis of previous work led
Bottinga and others (1982) to propose more complex, non-linear mixing relations for
aluminosilicate melts, but this proposal led to a controversy centering on whether the
precision of the available measurements supported the additional complexity (Ghi-
orso and Carmichael, 1984; Bottinga and others, 1984). In the ensuing two decades, an
impressive number of high quality experimental measurements of melt density have
been produced (see references below). These studies have established that non-ideal
volume of mixing does occur in certain simple systems, most notably CaO-Al2O3-SiO2
(Courtial and Dingwell, 1995), and in mixed alkali-metal, alkali-earth titania-bearing
systems (Johnson, ms, 1989; Dingwell, 1992; Liu and Lange, 2001) and possibly their
ferric iron-bearing equivalents (Dingwell and Brearley, 1988). Most importantly, as a
result of these studies the densities of many simple system compositions are now
determined to better than 0.5 percent and the effect of oxidation state on the densities
of iron-bearing melts has been explored. In addition, the last decade has seen a
number of studies demonstrating how dilatometric measurements of the density of
glasses can be combined with superliquidus densitometry measurements in order to
extend the temperature range over which the latter can be reliably extrapolated.
Simultaneous to these investigations on melt and glass density, a considerable experi-
mental effort has been aimed at measuring the speed of sound in molten silicate
systems, and from these measurements it is possible to deduce melt compressibility as a
function of both temperature and composition.

The two commonly used reference pressure EOS algorithms for routine calcula-
tion of anhydrous melt density and melt compressibility of magmatic composition
liquids were developed by Lange and Carmichael (1987) and Kress and Carmichael
(1991), respectively. In the intervening decade since the publication of these models,
experimental measurements have tripled in number and the scope of coverage, both
in composition and in temperature, has expanded considerably. In this paper the work
of Lange and Carmichael (1987) and Kress and Carmichael (1991) is updated by
assembling a new data set of density and sound speed measurements of molten silicate
liquids. These data calibrate the EOS developed in Part I and serve to anchor it to a
reference pressure data set of high quality measurements. The reference pressure
calibration developed in this paper will put the high-pressure parameter calibration to
be undertaken in Parts III and IV on sound footing.

model equations
The EOS of Part I (eq 25) reduces to the following simple relation along the

reference isobar:

VT,Pr ! V0,T ! V0,Tre
"(T#Tr) (2)

where " is the coefficient of thermal expansion. The pressure derivative of the volume
evaluated at Pr is expressed as:
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$V
$P"

T,Pr

! V1,T (3)

In Part I the V0,Tr
and " are taken to be independent of temperature while the

temperature-dependence of V1,T is unspecified. The issue that must now be addressed
is how to extend both of these expressions (eqs 2 and 3) to include the effect of
variable composition and how to specify the temperature-dependence of V1,T . The
latter will be discussed first.

Temperature Dependence of V1,T

The compressibility of a silicate melt #% $ #
1
V

$V
$P % is determined experimentally

from measurements of the sound speed. The relationship is given by

% !
1

&c 2 "
TV"2

CP
(4)

(for example, Rivers and Carmichael, 1987) where c is the speed of sound, & the
density, and CP is the isobaric heat capacity. Combining equations (2), (3) and (4)
gives

$V
$P"

T,Pr

! V1,T ! #V 0,Tr
2 # 1

Mc 2 "
T"2

CP
%'e "(T#Tr)*

2 (5)

where M is the mass. Assuming that the temperature-dependence of CP is essentially nil
for multi-component silicate liquids (no temperature-dependence to CP could be
resolved by Lange and Navrotsky, 1992), differentiation of equation (5) yields (after
some minor manipulation)

$2V
$T $P"

T,Pr

! 2"
$V
$P"

T,Pr

"
2V T,Pr

2

Mc 3

$c
$T #

V T,Pr
2 "2

CP
(6)

and this expression may be expanded using equation (2) to provide a model expres-
sion for the temperature-dependence of the cross partial derivative:

$2V
$T $P"

T,Pr

!
$V1,T

$T ! #& 2"

Mc 2 #1 #
1

c"

$c
$T% "

"2(1 " 2"T )

CP
'V 0,Tr

2 'e "(T#Tr)*
2 (7)

In studies on the compressibility of silicate liquids (Kress and others, 1988; Kress

and Carmichael, 1991; Webb and Dingwell, 1994; Webb and Courtial, 1996),
$V
$P"

T,Pr

is

generally approximated as a linear function of temperature. This linear T-dependence

for
$V
$P"

T,Pr

can be derived from equation (7) by noting that when " is small: (1) the

second term within the square brackets can be neglected and (2) the exponential may
be approximated by a Taylor expansion truncated to first order. Both approximations
transform equation (7) to

$2V
$T $P"

T,Pr

( #
2"

Mc 2 #1 #
1

c"

$c
$T%V 0,Tr

2 '1 " "(T # Tr )*
2 (8)

For T close to Tr , equation (8) further reduces to
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$2V
$T $P"T,Pr

( #
2"V 0,Tr

2

Mc 2 "
2V 0,Tr

2

Mc 3

$c
$T (9)

The temperature dependence of the sound speed in silicate melts is on the order of
c + 10#4 m/sec (Rivers and Carmichael, 1987; Kress and Carmichael, 1991; see below)

and measurements indicate that for a given bulk composition
$c
$T may be treated as a

constant. These experimental observations imply that a reasonable approximation to
equation (9) is

$2V
$T $P"

T,Pr

( #
2"V 0,Tr

2

McTr
2 "

2V 0,Tr
2

McTr
3

$c
$T (10)

where c is taken at the reference temperature and the right-hand side in this
approximation is a constant. Equation (10) provides the theoretical justification for the
model expressions adopted by Kress and Carmichael (1991; and subsequent workers):
if the right-hand-side of equation (10) is constant, then integration results in a model

expression of the form
$V
$P ! k0 " k1(T # Tr ), specifically

$V
$P !

$V
$P"

Tr , Pr

"
2V 0,Tr

2

Mc Tr
2 ##" "

1
cTr

$c
$T%(T # Tr ). (11)

However, it is important to realize that under the same set of assumptions employed in

deriving equation (10), equation (5) reduces to
$V
$P"

Tr ,Pr

(
#V 0,Tr

2

McTr
2 , which allows

equation (11) to be written in an alternate form

$V
$P !

$V
$P"

Tr , Pr

" 2
$V
$P"

Tr , Pr

#" #
1
cTr

$c
$T%(T # Tr ) (11,)

Equation (11,) reveals that if values of
$V
$P"

T,Pr

are derived from sound speed measurements

and are then fitted to a model expression of the form
$V
$P"

T,Pr

! k0 " k1(T # Tr ), the

model parameters k0 and k1 cannot be independent. In practice, k1, which is identically
$2V

$T $P"
Tr , Pr

, is largely dominated by the thermal expansion contribution (Rivers and

Carmichael, 1987), which can be seen by inserting typical values1 for

M, c,
$c
$T , V )T,Pr , ",

$V
$P"

T,Pr

, and CP into the right-hand-side of equation (6). The 2"
$V
$P"

T,Pr

term in (6) contributes !80 percent of the value of
$2V

$T $P"
T,Pr

. So, not only are the

1For example, M - 60
g

mol , c - 4 + 105
cm
s ,

$c
$T - #10

cm
s # K ,

V )T,Pr
- 30

cm3

mol , " - 1 + 10#4K#1,

$V
$P"T,Pr

-#2 $ 10#4
cm3

mol # bar , CP - 100
J

mol # K .
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parameters k0 and k1 correlated, but the value of k1 is largely determined by assumed
volumetric properties and not the sound speed measurements. To first convert the

sound speed data to
$V
$P"

T,Pr

and then extract model values for k0 and k1 on the

assumption that they are independent quantities, discards information that is known

regarding the temperature dependence of
$V
$P"

T,Pr

. This indirect analysis of the sound

speed data should be avoided, and it is proposed here to calibrate directly the speed of
sound as a function of temperature, and subsequently utilize modeled estimates of the

sound speed and equation (5) to calculate
$V
$P"

T,Pr

at specified T. The clear advantage of

this approach is that the dependence of sound speed on temperature can be quanti-
fied from primary experimental observations without obscuring the measured quantity
with contributions from temperature-dependent volumetric properties.

Mixing rules for V0,Tr
,
$VT,Pr

$T "
Tr

, and c

Turning now to the compositional dependence of the reference pressure model
parameters, the approach to be adopted (and to be carried forward into Parts III and

IV) is to consider simple mixing relations for the constituent quantities, V0,Tr
,
$VT,Pr

$T "
Tr

,

CP , M , and c , combining these as specified in equations (2) and (5) to form V0,T and
V1,T . The volume and its temperature derivative, the heat capacity and the mass are
extensive thermodynamic quantities. They may be written in partial molar form as

V0,Tr ! !
i

niv!i,Tr (12)

$VT,Pr

$T "
Tr

! !
i

ni

$v!i

$T (13)

CP ! !
i

ni !cP,i (14)

M ! !
i

n iMWi (15)

where the ni are the number of moles of the ith thermodynamic component and the
bar denotes the appropriate partial molar quantity. MWi is the molecular weight of the
ith component. The usual choice of components is the constituent oxides. Substituting
the definition of the thermal coefficient of expansion (Part I),

" !
1

V0,Tr

$VT,Pr

$T "
Tr

along with equations (12) and (13) into equation (2), gives the mixing relation for
volume
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VT,Pr ! V0,T ! V0,Tre
"(T#Tr) ! #!

i

niv!i,Tr %exp*#!i ni

$v!i

$T%
!

i

niv!i,Tr

(T # Tr )+ (16)

By analogy with the extensive quantities, the following mixing relation is proposed
for sound speed

c ! !
i

Xi !ci (17)

where the Xi are component mole fractions and the !ci are the temperature- and
possibly composition-dependent “partial molar” sound speeds (that is, the sound
speed contribution attributable to each component in the solution).

Equations (5) and (12) through (17) are formal statements of the mixing
relations for the proposed EOS in the reference-pressure limit. It should be noted that
no assumption has yet been made regarding the ideal or non-ideal nature of these
solutions. The intensive partial molar quantities (the barred quantities) under the
summation signs in equations (12) through (17) may be functions of composition, in
which case the mixing is non-linear and the solution non-ideal, or they may be
constants, in which case the mixing is both linear and ideal. Analysis of experimental
data sets dictates the complexity of the final model.

calibration of densities at 105 pa
A data set of experimental measurements of densities of silicate liquids is as-

sembled and sources are summarized in table 1. Details of the chemical systems
investigated and temperatures and results of each experimental datum are reported in
the Appendix in table A1. As a starting point for this compilation, the data set used by
Lange and Carmichael (1987) is adopted, which represents determinations of melt
density performed using the double bob Archemedian technique on well character-
ized molten silicate liquids in both simple and complex chemical systems. To these
data, similar measurements on liquids performed subsequent to 1987 are added and

Table 1

Parameters for computation of oxidized and reduced iron species

To . 1673 K, K2 . 0.4, y . 0.3; Kress and Carmichael, 1989, 1991; this work.
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determinations of the density of supercooled liquids at the glass transition tempera-
ture as reported by Lange (1996, 1997), Gottsmann and Dingwell (2000), and Toplis
and Richet (2000) are included. Other literature estimates of supercooled liquid
densities (Webb and others, 1992; Knoche and others 1992a, 1992b, 1994, 1995) are
not included in the calibration data set. In these studies low temperature dilatometric
measurements on glass are extrapolated to supercooled liquid conditions using
differential scanning calorimetry measurements of heat capacity. The assumption is
that the thermal and volumetric relaxation behavior of the glass is identical (Webb and
others, 1992). This assumption of the correlation of relaxation behaviors is problem-
atic (see discussion in Lange, 1996, 1997) and adoption of volume estimates based on
this method raises the potential for introducing systematic errors into the calibration.
The liquid density data set of table A1 is expanded in size by roughly a factor of three
over that considered by Lange and Carmichael (1987). More importantly, the scope of
coverage in critical chemical systems like CaO-MgO-Al2O3-SiO2 is greatly expanded
over the previous data set.

In terms of precision of density determinations, the data set splits naturally into
Fe-absent systems and Fe-bearing systems, the former measurements being notably
more precise (Lange and Carmichael, 1987). Measurements in Fe-bearing systems are
subject to greater error because of the increased experimental difficulty of containing
Fe-bearing melts and the added complication of determining quantitatively the
proportion of reduced and oxidized iron in the liquid under experimental conditions.
These issues are discussed extensively by Lange and Carmichael (1987, 1990).

In order to construct a data set to parameterize their model equation for melt
density in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2, Lange and
Carmichael (1987) chose to proceed from the observation that for the chemical
systems included in their calibration data set, density is a linear function of tempera-
ture over the range of measurement. From these relations they calculate densities
(molar volumes) at a fixed grid of temperatures: 1573, 1673, 1773, and 1873 K for each
bulk composition in the data set. Lange and Carmichael (1987) then regress each
“isothermal” data set against an expression for the volume of mixing. Analyzing the
parameters of these regressions they obtained an estimate of the temperature depen-
dence of the partial molar volume of each oxide component and a value at the
reference temperature. Lange and Carmichael (1987) deduce that an ideal mixing
model (that is the parameters v!i,Tr

in equation 12 are functions only of T ) is perfectly
adequate for liquids with XCaO / 0.5 and low concentrations of the mole fraction
product of soda and titania. They find evidence of non-ideality in liquids with
significant concentrations of both Na2O and TiO2. Temperature dependence of their
model parameters is found to be linear over the range 1573 to 1873 K.

The procedures of Lange and Carmichael (1987) will be revised in two important
ways. First, as the Fe-bearing data appear to contain more intrinsic experimental
uncertainty, only model parameters related to Fe-oxide components are extracted
from these data. All other model parameters are entirely determined from the
Fe-absent data set. Second, rather than artificially constructing isothermal “data
sets” from the experimental observations and fitting these “data sets” indepen-
dently, the model is constrained directly from the experimental observations at the
reported temperatures, extracting the temperature dependence of the model
parameters simultaneously with a reference temperature intercept term. The
construction of artificial isothermal “data sets” has the potential to impose correla-
tion within the regression problem, thereby skewing values of model parameters
obtained during the fit. This potential pitfall will be avoided by the analysis scheme
adopted here.
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The aim of this paper is to calibrate parameters for a liquid EOS that is applicable
to magmatic composition melts and is, within the more restricted composition space of
these liquids, as simple a formulation as is permitted by the available data. Keeping
these objectives in mind, the calibration data set will be restricted to liquids with mole
fraction of SiO2 0 0.5 in the system CaO-Al2O3-SiO2. This restriction is done to avoid
the well-documented nonlinearity in liquid volume that develops in this system at lower
silica contents (Ghiorso and Carmichael, 1984; Lange and Carmichael, 1987; Courtial
and Dingwell, 1995). Courtial and Dingwell (1995) model this non-ideality with a
quadratic interaction term between CaO and SiO2, but their model does not repro-
duce density measurements in Ca- and Al-rich melts in this system; a more complex
non-linear model appears to be necessary and will be avoided here. In contrast to the
system CaO-Al2O3-SiO2, and despite ample evidence of non-linear behavior, studies of
the densities of alkali metal-titanate melts (Johnson, ms, 1989; Dingwell, 1992; Liu and
Lange, 2001) are included. In the case of these systems the non-ideal behavior can be
modeled very well with Na-Ti and K-Ti binary interaction terms (Johnson, ms, 1989)
and inclusion of these non-linear effects has minimal impact on derived melt proper-
ties for natural composition liquids.

The proportion of oxidized to reduced iron must be calculated at the experimen-
tal temperature and oxygen fugacity conditions for Fe-bearing melts. The studies of
Kress and Carmichael (1989, the system CaO-FeO-Fe2O3-SiO2), Lange and Carmichael
(1989, the system Na2O-FeO-Fe2O3-SiO2), and Kress and Carmichael (1991, all other
Fe-bearing systems), provide data and models for estimating this quantity over a broad
range of bulk compositions, temperatures and oxygen fugacities. Kress and Car-
michael (1989) develop a method of calculation involving homogeneous equilibria
among Fe-bearing melt “species” that is adopted in this study. Their method is
motivated by the experimental observation that the simple oxidation-reaction

FeOmelt "
1
4 O2 ! FeO1.5

melt (18)

fails to completely characterize the oxidized to reduced iron ratio in silicate melts.
From the law of mass action, this equilibria implies the relation

ln
X FeO1.5

melt

X FeO
melt !

1
4 ln fO2 " non # ideal # terms (19)

but, Kress and Carmichael (1989) obtain an empirical value of 0.203 1 0.001, and
Kress and Carmichael (1991) determine a value of 0.196 1 0.001 for the oxygen
coefficient preceding the logarithmic term in equation (19). These experimental
observations prompted Kress and Carmichael (1989) to propose that a homogeneous
equilibrium between reduced, intermediate and oxidized melt species

(1 # 2y)FeOmelt " 2y FeO1.5
melt ! FeO12y

melt (20)

governs the macroscopic variation of ferric and ferrous iron abundances. They derive
the following relation

X FeO1.5
bulk

X FeO
bulk !

X FeO1.5
melt " 2yX FeO12y

melt

X FeO
melt " (1 # 2y)X FeO12y

melt !
KD1 f O2

1/4 " 2yK2K D1
2y f O2

y/2

1 " (1 # 2y)K2K D1
2y f O2

y/2 (21)

where the left-hand-side of this expression is the bulk or analytically determine
ferric-ferrous ratio of the melt—which is equivalent to the indicated ratio of concentra-
tions of melt species. The distribution coefficient, KD1, is given by
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KD1 !
X FeO1.5

melt

X FeO
melt ! exp,#

3H o

RT "
3S o

R #
3C P

o

R &1 #
To

T # ln#T
To%' #

1
RT !

i

3WiXi- (22)

and K2 is the equilibrium constant for reaction (20):

K2 !
a FeO12y

melt

(a FeO
melt )1#2y (a FeO1.5

melt )2y $
X FeO12y

melt

(X FeO
melt )1#2y (X FeO1.5

melt )2y (23)

The parameters in equation (20) correspond either to thermodynamic properties of
the oxidation-reduction reaction (18) (3H o, 3S o, 3C P

o), or to interaction terms (3Wi )
relating the influence of bulk composition (Xi ) on the ferric/ferrous ratio of the melt.
Kress and Carmichael (1989, 1991) fit the parameters of their homogeneous specia-
tion model and the results are reproduced in table 1. Measurements obtained by
Lange and Carmichael (1989) on liquids in the system Na2O-Fe2O3-FeO-SiO2 are fitted
to the speciation model of Kress and Carmichael (1989) and these results are reported
in the same table. Note that for all of the systems studied experimentally, the optimal
value for y is 0.3, which implies that homogeneous equilibrium between the Fe-species
FeO, FeO1.5, and FeO1.3 (or Fe0.4

22Fe0.6
32O1.3) define oxidation-reduction relations in the

melt. One of the primary advantages of the Kress and Carmichael (1989) “speciation”
approach is that by casting the calculation of the redox state of Fe as a condition of
homogeneous equilibrium between Fe-bearing melt species, the resulting equilibrium
species distribution corresponds to the minimum of the Gibbs free energy of the
system. Forward application of their model can therefore be achieved by standard
techniques of computational thermodynamics and there is never an inconsistency
between ferric/ferrous ratio derived by energy minimization and that implied by some
empirical calibration equation.

For all the Fe-bearing liquids in the data set of melt densities, the concentrations
of FeO, FeO1.3 and FeO1.5 are calculated at the temperature and oxygen fugacity
conditions of the experiment by solving simultaneously equations (21) through (23).
Partial molar volumes are obtained for all three melt species as part of the data analysis.
With the exception of some of the experiments performed by Hara and others (1988)
and those experiments of Shiraishi and others (1978) on Fe2SiO4-composition liquids
held in Fe-capsules under reducing conditions, all other Fe-bearing experiments in the
density data set were performed in air.

A model corresponding to equation (16) is fitted with parameter coefficients v!i,Tr

and
$v! i

$T taken to be constants for all Fe-bearing melt species and for all other oxide

components except TiO2. Recognizing that densities in the alkali oxide-titania systems
exhibit non-linear mixing behavior (see above), the partial molar volume of TiO2 is
parameterized as

v TiO2,Tr ! v ref-TiO2,Tr " XNa2Ov Na2O-TiO2,Tr " XK2Ov K2O-TiO2,Tr (24)

$v TiO2,Tr

$T !
$v ref-TiO2,Tr

$T " XNa2O

$v Na2O-TiO2,Tr

$T " XK2O

$v K2O-TiO2,Tr

$T (25)

where the volumetric terms on the right-hand-sides of equations (24) and (25) are
taken as constant. A three stage fitting procedure is employed. Initially, parameters are
extracted for the Fe-absent dataset, then fixing these parameters, coefficients for NiO
and CoO are extracted from the data set of Courtial and others (1999) and finally,
parameters for the Fe-bearing systems are regressed. At each stage the intrinsic
correlation of the independent variables is examined using techniques adapted from
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singular value analysis (Press and others, 1992). The regression problem is found at
each stage to be “full rank,” which means that there is sufficient variation of com-
position and temperature in the data set to determine uniquely all of the model
parameters.

Assessment of the Fe-bearing systems revealed an incompatibility between some of
the measurements of Dingwell and Brearley (1988) performed on liquids in the system
CaO-Fe2O3-FeO-SiO2 and the remainder of measurements in Fe-bearing systems,
including others in the same subsystem. This incompatibility indicated the possibility
of a compositional dependence to the partial molar properties of one or more of the
Fe-melt species. Further investigation revealed that simple modification of the partial
molar volume terms to include compositional dependence did not improve the fit.
Most importantly, it is found that inclusion of all the measurements of Dingwell and
Brearley (1988) induce systematic offsets in model residuals for the Na2O-Fe2O3-FeO-
SiO2 liquids and natural composition melts. In order to avoid introducing this bias into
the model all the measurements of densities of liquids in the system CaO-Fe2O3-FeO-
SiO2 are eliminated from the calibration data set. This procedure makes the average
error of fit to the Fe-bearing and Fe-absent data sets statistically equivalent. Regression
statistics summarizing the quality of the model are provided in table 2 and model
parameters are reported in table 3. Individual residuals on each datum are tabulated in
the Appendix (table A1) and are plotted in figure 1.

Analysis of model residuals for calibrants in the Fe-absent data set reveals no
correlation with either silica content of the liquid or with temperature (figs. 1A, 1D,
1G). The root-mean-square (r.m.s.)2 error of residuals for these data is 0.69 percent.
For comparison, Lange and Carmichael maintain that the relative precision of
individual measurements is between 0.14 percent and 0.33 percent, but these estimates
are smaller than the error resulting from comparing duplicate experiments. The
larger relative errors associated with the model fit must also reflect inter-laboratory
systematic error and analytical uncertainties associated with reported compositions of
experimental materials.

Model residuals for Fe-bearing liquids used in the calibration data set show no
systematic correlation with temperature (fig. 1E), but it can be seen in figure 1H that
results from different investigators in the system Na2O-Fe2O3-FeO-SiO2 show system-
atic inter-laboratory trends. Nevertheless, the r.m.s. error is 0.73 percent for this data
subset and is statistically equivalent to the Fe-absent systems.

Model residuals for liquids in the system CaO-Fe2O3-FeO-SiO2 are examined in
figures (1C), (1F) and (1I). These liquids were not used in the calibration data set.
Although the temperature dependence of these density data are reasonably well
accounted for by the model (fig. 1F), there are systematics to the residuals that are best
illustrated in figure 1I. Liquid compositions that fall along a pseudobinary, defined by
a constant molar ratio of CaO to SiO2 equal to one, fit the model well for XFe2O3

totalFe / 0.5.
Compositions with higher CaO/SiO2 ratios tend to have positive model residuals,
which corresponds to a predicted melt density smaller than that measured. Composi-
tions “4”, “5”, “9”, and “A” of Dingwell and Brearley (1988) that cluster near the
compositional midpoint of the system, have large and positive residuals. Sample “3” of
Dingwell and Brearley (1988) is consistent with results presented by Hara and others
(1988) on a similar composition, but sample “A” is not. Compositions studied by Mo
and others (1982) are systematically offset from results obtained by Dingwell and
Brearley (1988) on nearly identical compositions (their “1”). Sample “7” of Dingwell
and Brearley (1988), which is very silica depleted, is predicted to be significantly

2The square root of the sum-of-squares of model residuals divided by the square root of the number of
data points. This number is expressed here as a percentage of the average liquid volume.
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Table 2

Statistics of volume regression

*Systems NiO-Na2O-SiO2 and CoO-Na2O-SiO2 from Courtial and others (1999) excluded.
**Deviate from one experiment.
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 A

Fig. 1. Residuals for the calibration of equation (16) to the data set on melt volumes plotted as a
function of (1A, 1B, and 1C) volume, (1D, 1E, and 1F) temperature, and (1G, 1H, and 1I) mole fraction of
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B

Fig. 1 (continued ) SiO2. Residuals plotted in figures (1A), (1D) and (1G) correspond to Fe-absent data
utilized in the model calibration. Residuals plotted in figures (1B), (1E), and (1H) correspond to Fe-bearing
data utilized in model calibration, where the filled symbols indicate data from bulk compositions in the
system Na2O-Fe2O3-FeO-SiO2. Residuals plotted in figures (1C), (1F) and (1I) correspond to bulk composi-
tions in the system CaO-Fe2O3-FeO-SiO2 (sensu stricto). These data were not utilized in developing the model
calibration; numbers correspond to individual compositions identified in table A2. In figure (1I) an inset
shows bulk compositions plotted in a weight percent ternary diagram; the pseudobinary lines indicate
equimolar ratios of oxides. The horizontal solid lines on all the figures are zero residual reference lines. The
vertical solids lines on figures (1A), (1B) and (1C) denote the average volume of the calibration data set. The
dotted lines on all figures give contours in relative error (% residual/average) while the dashed lines
correspond to 11, 12, et cetera, root mean square (r.m.s) deviations for the fit to the calibration data set.
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denser than measurements indicate, but their sample “3” and samples “1” and “2” of
Hara and others (1988) show an opposite result. All of these measurements in the
CaO-Fe2O3-FeO-SiO2 system were performed in air with the exception of experiments
“4” and “5” of Hara and others (1988) which were run under fO2

!2 and 3.5 log units
below air. Experiments “3”, “4” and “5” of Hara and others (1988) represent the same

C

Fig. 1 (continued )
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D

Fig. 1 (continued )
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bulk composition. These authors interpret the scatter of residuals in “5” as potentially
due to liquid immiscibility in the system under reducing conditions, but comparing
residuals for their samples “3” and “4,” there is a hint of some systematic dependence
on oxygen fugacity. Hara and others (1988) concluded that unlike the CaO-Fe2O3
binary, which they found to exhibit linear mixing relations for the volume, significant
nonlinear effects are seen in the ternary. In constrast, Dingwell and Brearley (1988)
model their data with strongly positive interactions of CaO and Fe2O3 and weakly

E

Fig. 1 (continued )

694 M. S. Ghiorso and V. C. Kress—An equation of state for silicate melts.



negative CaO-SiO2 interactions, but the residual pattern displayed in figure 1I does not
support this analysis. Kress and Carmichael (1989) were able to fit a linear mixing
model to the data of Dingwell and Brearley (1988) (with SiO2 0 20 wt %) and the two
compositions from Mo and others (1982), but their value for the partial molar volume
of Fe2O3 is smaller by !5 cc/mol than the model value obtained in this analysis.

F

Fig. 1 (continued )
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G

Fig. 1 (continued )
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Although it is clear from figure 1I that there are nonlinearities in the volume mixing
properties in the CaO-Fe2O3-FeO-SiO2 system, it is not at all obvious how these might
be accounted for in a model expression. “Binary” CaO-(FeO, FeO1.3, Fe2O3) terms are
unsupported by the data of Hara and others (1988). The system CaO-SiO2 is very
nearly ideal except at XCaO 0 0.6 (Courtial and Dingwell, 1995) and at higher CaO
contents exhibits positive deviations from ideality. Interaction terms on the SiO2-(FeO,

H

Fig. 1 (continued )
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FeO1.3, Fe2O3) join are unwarranted, in that they would impact the model results on
the other Fe-bearing systems (fig. 1H) which are adequately represented by a linear
model. Ternary interactions might be the answer, but the model residuals in figure 1I
are not systematic about the compositional midpoint of the system. At present there is
no obvious resolution to the dilemma of misfits in the system CaO-Fe2O3-FeO-SiO2.
The model presented here should only be used with caution for liquids in this system.

I

Fig. 1 (continued )
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In table 4 results from the proposed model and that of Lange and Carmichael
(1987) are examined by comparing the calculated root-mean-square (r.m.s.) residuals
from each model and each data subset. Differences in r.m.s. are evaluated in terms of
an F -statistic and the significance level of that F is reported. Violation of the null
hypothesis (that is statistically equivalent fits obtained from the two model approaches)
is indicated by a significance level smaller than 0.05. Only the first five data sets
identified in the table were considered by Lange and Carmichael (1987). Notably, the
proposed model recovers the Fe-absent data of Lange & Carmichael (1987) less
accurately and conversely the data of Mo and others (1982), Stein and others (1986),
and Bockris and others (1955) with greater accuracy. Overall, the proposed model is
significantly better in recovering the data set for both the Fe-absent and Fe-bearing
subsets (table 4).

A table of values of model dependent partial molar volumes of oxide components
at 105 Pa and over a range of temperatures is presented in table 5. These values are
provided for convenience to give a sense of the magnitudes and temperature variations
of the inferred endmember properties, but should not be used to calculate model
volumes for mixtures; such calculations require the use of equation (16). Nevertheless,
the values tabulated highlight that the partial molar expansivities of the oxides are
positive with the exception of Al2O3. The negative thermal expansion of alumina can
be interpreted as a shift in the oxygen coordination number of Al to higher values at
elevated temperature. The same feature was seen for Si coordination number shifts in
the example thermodynamic model for SiO2 liquid developed in Part I. If this
interpretation is correct then it highlights the likely possibility that the parameter
values obtained in this modeling exercise mix vibrational effects with those that may be
attributed to configurational changes associated with the compositional and tempera-
ture dependence of the coordination number of melt cations. The possible mixing of
vibrational and configurational effects is an unfortunate confusion of contributions
and the model would be more robust if configurational effects could be modeled
independently (Part I). But, in lieu of extensive spectroscopic data or molecular
dynamics simulations for the range of compositions spanned by this model, the

Table 3

Volume model parameters
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preferred approach is simply not possible. The issue is especially important when using
the reference pressure volume parameters calibrated here with the EOS model at high
pressures and temperatures. The problem will be examined in detail in the context of
such applications in Parts III and IV.

The Volume of CaMgSi2O6 Liquid
Before turning to calibration of sound speed measurements, it is instructive to

examine model predictions and experimental results on liquids of nominally diopside
composition. There are two reasons for this examination. First, this composition is well
studied by a number of authors and a comparison of model results to experimental
measurements allows the evaluation of interlaboratory reproducibility. Second, the

Table 4

Comparison of Model results with Lange and Carmichael (1987)
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temperature dependence of the molar volume of diopside liquid has been the subject
of some controversy and the model developed here can inform that debate via an
analysis of uncertainty due to compositional variability of experimental materials.

In figure 2 data are plotted on the specific volume (cc/gm) of “diopside”-
composition liquids and glasses taken from glass dilatometric studies by Knoche and
others (1992a), Lange (1997), Gottsmann and Dingwell (2000), and Toplis and Richet
(2000) and double-bob Archimedian densimetric measurements on liquids by Knoche
and others (1992a) and Lange and Carmichael (1987). The error bars on these data
points are those suggested by Lange (2002) and represent the likely minimal error in
the accuracy of the determination. This error estimate is taken to be 0.3 percent. The
shaded band in figure 2A represents the calculated model value for stoichiometric
CaMgSi2O6 liquid plus or minus the r.m.s. model error (1 0.76%, table 2). None of
these data are significant outliers in the model calibration. Gottsmann and Dingwell
(2000) argue that the high-temperature densimetric data in combination with their
low temperature glass measurements and those of Knoche and others (1992a) and
Lange (1997), imply that there is a strong non-linear temperature dependence to the
specific volume. They model a second order polynomial in temperature to these data.
The figure inset shows their model as the dashed curve. Lange (2002) argues that this
data set can be adequately represented by a line of constant slope. Her model (Lange,
1997) is shown by the solid line in the inset to figure 2A. Dingwell and Gottsmann
(2002) dispute Lange’s analysis. In our model, the choice of making the thermal

Fig. 2. Comparison of volumetric measurements on liquids (T 0 1400 °C) and glasses (T / 950 °C) of
nominal composition CaMgSi2O6 (“diopside”) compared with model estimates. Data points are plotted with
an error bracket reflecting the likely minimum error in the accuracy of the measurement; a value of 0.3
percent, as suggested by Lange (2002). (A) The shaded band gives a model estimate of volume 1 0.76
percent (one root-mean-square error of the model regression). Inset shows extrapolated values to 3000 °C
calculated using models proposed in this paper (shaded band), Lange (1997) (solid line), and Gottsmann
and Dingwell (2000) (dashed curve).
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Fig. 2 (continued ). (B) Solid curves bracket volumes (1 0.76%) of stoichiometric CaMgSi2O6
calculated from the model expression developed in this paper. Shaded bands correspond to calculations for
the reported compositions of nominal CaMgSi2O6 given by the authors; the width of the band is derived only from
the reported uncertainty of the analysis. The dashed curve is calculated from the original analysis reported by
Knoche and others (1992a), where no estimate of uncertainty was given; the shaded band is calculated from
a reanalysis of their composition by Gottsmann and Dingwell (2000).
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coefficient of expansion a constant is motivated as a compromise to insure that results
can be extrapolated outside of the temperature range of bracketed experiments. In the
case of CaMgSi2O6 liquid, the model value for " is sufficiently small that over the
temperature range being considered the variation of volume with temperature is
effectively linear. Consequently, our extrapolated model value for volume differs from
that of Lange (1997) by only 1 percent at 3000° C, whereas the volume obtained from
Gottsmann and Dingwell’s (2000) model is 5 percent lower (fig. 2A). Regardless of the
detailed arguments regarding the precision and accuracy of these measurements that
validate or invalidate either model of temperature dependence, these data illustrate
that the intended use of the model can and should dictate the complexity of its
structure. The simplest representations of the data are probably best adopted if the
intent is to extrapolate beyond the range of available experimental data—the straight
line extrapolation is probably a better estimate of the volume of diopside liquid at
3000°C than the parabolic extrapolation. This point is especially relevant if attention is
directed to uncertainties in derived volumes due to uncertainties in compositions of
experimental materials.

The glass and liquid compositions studied by the authors whose data are plotted in
figure 2A do not correspond to stoichiometric CaMgSi2O6. There are departures from
stoichiometry due to preparation procedures and techniques of synthesis. In addition,
there are varying degrees of uncertainty in composition associated with the techniques
used to analyze experimental materials. An attempt to address the consequences of
these compositional effects is made in figure 2B. Data points are plotted from each
author along with a shaded band that corresponds to the reported uncertainty in
composition propagated through the model calibrated here to yield an implied uncer-
tainty in specific volume. Each band is centered on the composition of “diopside” given
by each author. The uncertainty in volume implied by the width of the band is solely
due to reported analytical uncertainty, and data points may be displaced according to
the band half-width. Non-stoichiometry of experimental materials can be assessed by
noting the asymmetry of the band within the solid lines, which provide a reference
bracket for model predictions of stoichiometric diopside. In the case of Knoche and
others (1992a), the dashed line corresponds to the original reported analysis (given
without error estimates) and the shaded band to a reanalysis of this glass by Dingwell
and Gottsmann (2000). Note that Lange and Carmichael (1987) analyzed their
experimental materials using wet chemical techniques, whereas the other authors
utilized microprobe methods. No attempt has been made to assess systematic errors in
glass standards that influence results of the mircroprobe technique. It is clear from
figure 2B that analytical error associated with the glass analyses of Gotttsmann and
Dingwell (2000) is comparable to the r.m.s. error of the model calibration. This
uncertainty due to analytical error is approximately 4 times the estimated precision
reported by these authors and over twice the minimal uncertainty in accuracy sug-
gested by Lange (2002) for these measurements. The propagated analytical error is
larger than the precision of analysis in all cases except that of Lange (Lange and
Carmichael, 1987; Lange, 1997). This fact is a testament to careful wet chemical
analysis of experimental materials. Two points should be gleaned from this discussion
of propagated analytical error. The first is that analytical uncertainty alone brings into
question the conclusion that a second order polynomial is required to describe the
temperature dependence of the specific volume of diopside liquid. The second, and
more important point, is that this analysis of the effect of compositional uncertainty
required application of a multicomponent model to fully understand the sources of
error and robustness of any conclusions. Finally, both points underscore that a
multicomponent calibration of melt volume (or density) cannot be more precise than
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the experimental measurements utilized in calibration. A major source of that uncer-
tainty for the model calibrated here is compositional in origin.

calibration of sound speed measurements
A data set of experimental measurements of sound speeds in silicate liquids is

assembled and summarized in table 6. Details of the chemical systems investigated and
temperatures and results for each experimental datum are reported in the Appendix
(table A2). As a starting point for this compilation, the data set used by Kress and
Carmichael (1991) is adopted to which have been added more recent work on
CaO-Al2O3-SiO2 (Webb and Courtial, 1996) and TiO2-bearing systems (Webb and
Dingwell, 1994). Only relaxed sound speeds are considered for inclusion in the data
set. These are selected according to criteria described in Kress and Carmichael (1991).
Taking a cue from results of the volume regression, parameters of the sound speed
mixing relation (eq 17) are treated as functions of temperature with cross-composition
terms to accommodate alkali-titania interactions in order to maintain consistency with
the volume model. These considerations give the regression model:

c)T,Pr ! !
i

Xi&!ci"
1673K

"
$!ci

$T (T # 1673)' " XNa2OXTiO2 !cNa#Ti2XK2OXTiO2 !cNa#Ti (26)

Note that the summation is over all oxide components and all Fe-bearing melt species
in the liquid; the Fe-bearing liquids of Kress and Carmichael (1991) are processed to
calculate abundances of FeO, FeO1.3, and FeO1.5, in an exactly analogous manner to
the treatment of the density data set. The variance of temperature in the calibration
data set is insufficient to resolve the temperature-dependence of the quadratic
composition terms. Calibration of the parameters in equation (26) to the sound speed
data generates a fit with a relative error of about 5 percent, which is considerably larger
than the experimental uncertainty of !2 percent (Kress and Carmichael, 1991). Given
that Kress and Carmichael (1991) found that their model for the compositional
dependence of $V/$P required the addition of cross-composition terms involving the
product of Na2O and Al2O3 mole fractions, equation (26) is modified to

c)T,Pr ! !
i

Xi &!ci"
1673K

"
$!ci

$T (T # 1673)' " XNa2OXAl2O3 !cNa#Al " XNa2OXTiO2 !cNa#Ti

" XK2OXTiO2 !cNa#Ti (27)

A final regression calibration with equation (27) returns a relative error of 1.7 percent.
Model residuals to equation (27) were further analyzed under the suspicion that terms
involving K2O-Al2O3 and CaO-Al2O3 interactions would be warranted. While there is
some hint that such terms may be important, the spectrum of melt compositions in the
data set are too restrictive to determine statistically meaningful coefficients. The
preferred model for sound speed is calculated from equation (27). Parameters are
listed in table 7. Statistical aspects of the fit are summarized in table 6. As with the
volume regression described above, techniques of singular value decomposition were
used to access cross-correlation of model parameters. All parameters are determined
to be statistically meaningful.

The model expression reproduces the sound speed data set with an overall relative
precision of 1.7 percent (table 6). Residuals for each datum are reported in the
Appendix and are plotted in figure 3. No patterns involving systematic deviation of
subsets of the data are discernible from figure 3. For convenience, values of sound
speed oxide coefficients are tabulated as a function of temperature in table 8.
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Values of sound speed calculated for each experimental datum from the model
equation are combined with results obtained in the previous section to compute a
model $V/$P (eq 5). For this purpose the liquid heat capacity calibration of Lange and
Navrotsky (1992) is used. Taking the measured sound speed for each datum and
utilizing the same procedure and ancillary volume data, an internally consistent
estimate of $V/$P is obtained that may be compared to that derived from the model
calibration. The difference between this $V/$P and the estimate from the sound speed
model is reported in the Appendix (table A2) and plotted against derived values of
$V/$P in figure 4. Table 6 summarizes statistics associated with prediction of $V/$P
from the sound speed model (entries in columns labeled with [c]). The overall relative
error in model results is 4.1 percent. As this relative error is larger than the relative
error in the sound speed regression, it might be surmised that uncertainties in volume
and expansivity terms contribute to and overwhelm the errors in modeled sound
speed. That is not the case. A first order error propagation analysis (Bevington, 1969)
of equation (5) gives the following formula

s$V/$P
2 ( 4V 0,Tr

2 # 1
Mc 2 "

T"2

CP
%2

sV0,Tr

2 " #2V 0,Tr
2

Mc 3 %2

s c
2 " #2V 0,Tr

2 T"

CP
%2

s"
2 (28)

Inserting typical values3 into this expression one obtains 3.9 percent as an estimate of
the relative error in modeled $V/$P, which is essentially identical to the 4.1 percent
reported in table 6. The majority of error arises from the second term in the
expression, which is related to uncertainty in the modeled sound speed, and accounts
for about 70 percent of the total propagated uncertainty in $V/$P.

3For example, M - 60
g

mol , c - 2.8 + 105
cm
s (table 6), V )T,Pr

- 25
cm3

mol (table 1), " - 5 + 10#5K#1,

CP - 100
J

mol # K , T . 1673K, sV0,Tr
! 0.24

cm3

mol (table 2), sc - 4700
cm
s (table 6), s" - 1 + 10#5K#1.

Table 7

Model parameters for sound speed analysis
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Fig. 3. Residuals of the sound speed regression (eq 19) plotted against the measured sound speed. The
dotted lines give contours in relative error (% residual/average); the dashed lines correspond to 11, 12
root mean square deviation. The solid line is a reference for zero residuals.
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Fig. 4. Residuals of modeled values of $V/$P calculated from the sound speed regression (eqs 19 and 5)
plotted against values of $V/$P calculated from the measured sound speed. The dotted lines give contours in
relative error (% residual/average); the dashed lines correspond to 11, 12 root mean square deviation. The
solid line is a reference for zero residuals.

710 M. S. Ghiorso and V. C. Kress—An equation of state for silicate melts.



Before examining some of the features of the sound speed-$V/$P model it is
instructive to access the usefulness of a more direct model equation for $V/$P of the
form

$V
$P"

T,Pr

! !
i

ni &$v! i

$P"1673K
"

$2v! i

$T $P (T # 1673)'
" (!

i

ni ) #XNa2OXAl2O3

$v!Na#Al

$P " XNa2OXTiO2

$v! Na#Ti

$P " XK2OXTiO2

$v! K#Ti

$P % (29)

which is easier to manipulate and has been used previously (Kress and Carmichael,
1991; minus the alkali metal oxide-titania interaction terms). Values for model
coefficients in equation (21) are obtained by regression of $V/$P calculated from the
sound speed dataset. In performing this analysis it is found that the uncertainty in

derived values for the
$2v! i

$T $P coefficients is so large that it makes little sense to treat

them as independent parameters of the model. This problem is addressed by fixing the
values of these coefficients according to equation (10), which accounts for 80 percent
of the temperature variation of $V/$P as discussed above, and which renders these

parameters as functions of the other #$v! i

$P"
1673K

% more statistically significant terms. The

result of this regression is a model equation for $V/$P of poorer quality than the sound
speed based model. Residuals for the two models are compared in figure 5. Statistics
summarizing the quality of fit are reported in table 6. The relative error for the entire
dataset (5.1%) is 25 percent higher for the direct $V/$P model over that of the sound
speed model. Note that the data subsets of Webb and Courtial (1996) and Baidov and
Kunin (1968) are very poorly reproduced by the direct $V/$P model, suggesting that
the functional form of equation (29) is lacking some essential features that are
necessary to accommodate these data sets. The deficiency is probably related to the fact
that while $V/$P is a simple function of composition in equation (29), the sound speed
model implies a high degree of nonlinearity. This nonlinear behavior results from the
combination of a series of essentially linear models for sound speed, heat capacity,
volume, et cetera, via equation (5) to generate a predictive expression for $V/$P. Our
analysis demonstrating that equation (29) cannot reproduce the experimental data-
base with a precision comparable to the sound speed model suggests that by focusing
on the latter, some important features of the compositional variation of $V/$P in
silicate melts have been captured indirectly. To explore this issue further, the composi-
tional variation of $V/$P will be investigated in a few well-characterized simple systems.

In figures 6A and 6B are plotted model values of $V/$P and experimental data for
liquids in the systems Na2O-SiO2 and CaO-SiO2, respectively. Note that in both of these
systems, the variation in sound speed, volume, thermal expansion and heat capacity is
linear. The non-linear behavior in $V/$P arises solely from the combination of these
linear models (eq 5). Agreement between model and experimental values is good in
both of these systems, but unfortunately, the experimental data sets are not extensive
enough to evaluate the compositional effects. In figures 7A and 7B variation of $V/$P
in the systems Na2O-Al2O3-SiO2 and CaO-Al2O3-SiO2, respectively, at 1400°C is exam-
ined. In figure 7A, the Na2O-Al2O3 interaction term in the sound speed model (eq 28)
makes the contours of $V/$P more parallel to the Na2O-SiO2 join but does not
substantially alter the geometry of the surface in the vicinity of the experimental data.
What the Na2O-Al2O3 interaction term does do is augment the already existing
nonlinearity and lower the value of $V/$P to bring the model into better agreement. In
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the CaO-Al2O3-SiO2 system, the nonlinearity is far less pronounced but clearly evident
from the contour spacing on either the CaO-SiO2 or CaO-Al2O3 join. The distribution
of data points in this system is consistent with a wider spacing of $V/$P contours at the

Fig. 5. Residuals of modeled values of $V/$P calculated from a direct regression of $V/$P (eq 21)
plotted against residuals of modeled values of $V/$P calculated from the sound speed regression (eqs 19 and
5). The dashed lines correspond to 11, 12 root mean square deviation. The solid lines are a reference for
zero residuals.
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A

B

Fig. 7. Calculated variation in $V/$P at 1400°C in the systems (A) Na2O-Al2O3-SiO2 and (B) CaO-Al2O3-
SiO2, respectively. Contour values are in units of cc/GPa. Compositions are plotted in mole percent. Data
plotted in (A) are from Kress and others (1988). Data plotted in (B) are from Webb and Courtial (1996).
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high CaO apex. This distribution is probably the reason for the dramatic failure of the
linear $V/$P calibration for this data subset.

an example calculation
The reference pressure models for silicate liquid volume and sound speed

(compressibility) developed in this paper must be carefully applied, especially to
Fe-bearing systems. For this reason, an example calculation is particularly useful. In this
last section, the volume, density, thermal expansion, sound speed, compressibility and
bulk modulus will be estimated from the models calibrated here for a natural liquid with
the composition of a mid-ocean ridge basalt. This example is developed in table 9.

In columns A-G and rows 1-14 of table 9 are summarized parameter values for the
models derived in this paper and molecular weight and heat capacity coefficients
(Lange and Navrotsky, 1992) required to estimate compressibility from the sound
speed.

A mid-ocean ridge basalt (MORB) bulk composition is given in column B, rows
18-28 (hereafter B18:28). Before this composition can be processed, temperature must
be specified along with the oxygen fugacity of the liquid. For this example a tempera-
ture of 1200° C and oxygen fugacity corresponding to the QFM buffer at the same
temperature (E17) is chosen. The following procedure is then followed:

• Grams of oxides are converted to moles (B18:27 3 C18:27) by dividing the
former with the molecular weights (F2:11).

• The moles of oxides, which include iron in oxidized and reduced form, must
now be converted to a combination of moles of oxides and moles of Fe-species:
FeO, FeO1.3, FeO1.5. Note that the moles of FeO1.5 is twice the moles of the
equivalent species Fe2O3 (2mFe2O3

melt . mFeO1.5

melt ).
• Equations (21) and (23) are restated in terms of moles of species

and solved iteratively along with a mass balance expression:

mFeO1.5
melt " 2ymFeO12y

melt

mFeO
melt " (1 # 2y)mFeO12y

melt !
KD1 f O2

1/4 " 2yK2K D1
2y f O2

y/2

1 " (1 # 2y)K2K D1
2y f O2

y/2 (30)

mFeO12y
melt

(mFeO
melt )1#2y (mFeO1.5

melt )2y ! K2 (31)

mFeO
melt " mFeO1.3

melt " mFeO1.5
melt ! mFeO

bulk " 2mFe2O3
bulk (32)

The solution to this system of three equations and three unknowns is
possible because the right-hand-sides of equations (30)-(32) are known
from the constants reported in table 1 (column 3) and the bulk composi-
tion of the MORB. The bulk composition enters in the value of KD1 (eq 22).
It is especially important to understand that the summation over compo-
nents in equation (22), namely the ¥

i
3WiXi term, requires the mole

fractions to be expressed in terms of oxide components with the bulk iron
converted entirely to FeO. This procedure is done so that KD1 is a constant
for a given bulk composition and does not itself depend on speciation of
iron. For all oxide components where a 3Wi is not reported in table 1,
assume a value of zero.

• Calculated moles of oxides and Fe-bearing melt species are reported in
E18:28 of table 9. For illustrative purposes, these numbers are converted back to
grams and reported in D18:28. This step is not necessary for model calculations.

• Mole fractions are calculated from the mole numbers in E18:28 and are listed in
F18:27.
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Table 9

Example calculations



• Mole numbers (C18:27) are multiplied by parameter coefficients for reference
volume (B2:11), and its temperature derivative (C2:11) to obtain the numbers
in B32:41 and C32:41 respectively.

• The cross-composition terms in B42:43 and C42:43 are obtained by multiply-
ing moles of the appropriate two oxides times the parameters reported in
B12:13 and C12:13, and then dividing each result by the total number of moles
(E28).

• Mole fractions (F18:27) are multiplied by parameter coefficients for reference
sound speed (D2:11), and its temperature derivative (E2:11) to obtain the
numbers in D32:41 and E32:41 respectively.

• The cross-composition terms in D42:44 are obtained by multiplying mole fractions
of the appropriate two oxides times the parameters reported in D12:14.

• The gram-formula weight contributions (F32:41) and heat capacity contribu-
tions (G32:41) are obtained by multiplying mole numbers (E18:27) by parame-
ter coefficients in F2:11 and G2:11.

• Rows 32 through 44 of table 9 are totaled in columns B through G of row 45.
The quantity reported in B45 is the volume of 1.59644 moles (E28) of MORB

composition liquid at 1400°C. C45 reports
$V
$T under the same conditions. F45

and G45 report the molecular weight and heat capacity, again for 1.59644 moles
of material. These are extensive (mass dependent) thermodynamic quantities.
They may be converted to molar or specific quantities by dividing by total moles
(1.59644, E28) or total mass (100.01, D28).

• In row 46 of table 9, totals are accumulated neglecting the alkali-metal oxide-
titania cross terms. These terms are neglected to illustrate that for natural
composition liquids like MORB, such interactions have little consequence on
derived model results, and can be readily neglected.

• The thermal coefficient of expansion (B49, C49) is calculated by dividing
$V
$T by

the reference temperature volume (B45, B46).
• The volume at 1200°C (B50, C50) is calculated from equation (2). Remember

that this quantity is extensive.
• The density (B51, C51) is calculated by dividing the volume into the gram-

formula-weight (F45).

• The sound speed (F49, G49) is obtained from the relation c . c1673K 2
dc
dT (T #

1673K) using values of c1673K and
dc
dT from D45:46 and E45. The sound speed is

intensive. It only depends on the bulk composition of the liquid, not on the
amount of that liquid.

• The quantities
$V
$P (F50, G50) are calculated from the sound speeds using

equation (5). Care must be taken to make sure the units cancel. If the
temperature is in Kelvins, " in K #1 (B49, C49), V0,Tr

in cc (B50, C50), M in gm
(F45), c in m/sec, and CP in J/K, then equation (5) should be written as

$V
$P"

T,Pr

! #V 0,Tr
2 #100

Mc 2 "
T"2

10CP
%'e "(T#Tr)*

2
$ 10#9

in order to return a result in cc/Pa.
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• Compressibility (F51, G51) is calculated from
$V
$T by dividing by the volume and

negating the result.
• The bulk modulus (F52, G52) is taken as the inverse of the compressibility,

converted to GPa.
An Excel spreadsheet that implements the entire calculation reported in table 9 is
available from the authors’ website4.

conclusion
Available data on density determinations of melts and of supercooled silicate

liquids at the glass transition temperature, in conjunction with measurements of
relaxed sound speeds, provides a means of calibrating equation of state model
parameters applicable at 105 Pa. The resulting calibration will form a base for
extending the EOS to elevated pressures. This extension is the subject of the next two
contributions to this series of papers.
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Appendix
Tables A1 and A2 summarize experimental results and model residuals for the data sets utilized in

calibration of the volume and sound speed models.

Temperature derivatives of V1,T
In order to utilize the calibration of V1,T in thermodynamic calculations involving the EOS developed in

Part I, higher order temperature derivatives of equation (5)

$V
$P"T,Pr

! V1,T ! #V 0,T
2 # 1

Mc 2 "
T"2

CP
% (A-1)

are required. The first is provided in the text (eq 6) and is reproduced here in slightly different notation for
completeness:

$V1,T

$T ! 2"V1,T "
2V 0,T

2

Mc 3

$c
$T #

V 0,T
2 "2

CP
(A-2)

The second derivative is given by

$2V1,T

$T 2 ! 2"
$V 1,T

$T "
4"V 0,T

2

Mc 3

$c
$T #

6V 0,T
2

Mc 4 # $c
$T %2

#
2V 0,T

2 "3

CP
(A-3)

and the third derivative is given by

$3V1,T

$T 3 ! 2"
$2V1,T

$T 2 "
8"2V 0,T

2

Mc 3

$c
$T #

24"V 0,T
2

Mc 4 # $c
$T %2

"
24V 0,T

2

Mc 5 # $c
$T %3

#
4V 0,T

2 "4

CP
(A-4)

In all four expressions advantage has been taken of the fact that the model sound speed is a linear function
of temperature and that both " and CP are temperature independent quantities in the model.

4http://melts.uchicago.edu/EOS/
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Table A1

Sources of volume data
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Table A1

(continued)
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Table A1

(continued)
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(continued)
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(continued)
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